DEPARTMENT OF MATHEMATICS

PROGRAMME: B.Sc. MATHEMATICS

PROGRAMME OUTCOMES (PO)

PO 1. Critical Thinking

1.1. Acquire the ability to apply the basic tenets of logic and science to thoughts, actions and interventions.

1.2. Develop the ability to chart out a progressive direction for actions and interventions by learning to recognize the presence of hegemonic ideology within certain dominant notions.

1.3 Develop self-critical abilities and also the ability to view positions, problems and social issues from plural perspectives.

PO 2. Effective Citizenship

2.1. Learn to participate in nation building by adhering to the principles of sovereignty of the nation, socialism, secularism, democracy and the values that guide a republic.

2.2. Develop and practice gender sensitive attitudes, environmental awareness, empathetic social awareness about various kinds of marginalization and the ability to understand and resist various kinds of discriminations.

2.3. Internalize certain highlights of the nation's and region's history. Especially of the freedom movement, the renaissance within native societies and the project of modernization of the post-colonial society.

PO 3. Effective Communication

3.1. Acquire the ability to speak, write, read and listen clearly in person and through electronic media in both English and in one Modern Indian Language

3.2. Learn to articulate, analyses, synthesize, and evaluate ideas and situations in a well-informed manner. 3.3. Generate hypotheses and articulate assent or dissent by employing both reason and creative thinking.

PO 4. Interdisciplinary

4.1. Perceive knowledge as an organic, comprehensive, interrelated and integrated faculty of the human mind.

4 4.2. Understand the issues of environmental contexts and sustainable development as a basic interdisciplinary concern of all disciplines.

4.3. Develop aesthetic, social, humanistic and artistic sensibilities for problem solving and evolving a comprehensive perspective.

PROGRAMME SPECIFIC OUTCOMES OF B.SC. MATHEMATICS PROGRAMME

PSO 1: Understand the basic concepts and tools of Mathematical logic, Set theory, Number theory, Geometry, Calculus, Algebra, Abstract structures, Linear Algebra, Analysis, Laplace transforms, Fourier series, Graph theory, and Optimization and methods of proofs.

PSO 2: Model real world problems into Mathematical problems and find solutions and understand the application of Mathematics in other Sciences and Engineering

COURSE OUTCOME

SE	COURSE CODE	Title of the Course	COURSE OUTCOME
1	1B01 MAT	Set Theory, Differential Calculus and Numerical Methods	 CO1 Understand Relations and Functions CO2 Understand limit of a function, limit laws, continuity, Inverse functions and their derivatives CO3 Understand successive differentiation and Leibnitz theorem CO4 Understand functions of several variables, limit and continuity, partial derivatives, chain rule, homogenous functions and Euler's theorem on homogenous functions CO5 Understand bisection method. Regula-falsi method and Newton
			CO1Understand Hyperbolic functions
2	2B02 MAT	Integral Calculus and Logic	CO2 Understand Reduction formulae for trigonometric functions and evaluation of definite integrals $\int_{0}^{\frac{\pi}{2}} \sin^{m} dx$, $\int_{0}^{\frac{\pi}{2}} \cos^{n} x dx$ and $\int_{0}^{\frac{\pi}{2}} \sin^{n} x \cos^{m} x dx$ CO3 Understand Polar coordinates CO4 Understand Double integrals in Cartesian and polar form. CO5 Understand triple integrals in rectangular, cylindrical and spherical co-ordinates CO6 Understand Substitution in multiple integrals CO7 Understand Numerical integration: Trapezoidal rule, Simpson's 1/3rd rule CO8 Understand Logic and methods of proofs CO9 Understand Propositional functions, truth set and Negation of quantified statements
3	3B03 MAT	Analytic Geometry and Applications of derivatives	 Understand Cartesian equation of conics, eccentricity, polar equations for a conic, lines, circles CO2 Understand Tangents, Normal and Asymptotes CO3 Understand Curvature, Radius of curvature ,Centre of Curvature, Circle of curvature and Evolutes of Cartesian and polar curves, CO4 Understand Rolle's Theorem, Lagrange's Mean Value Theorem, Cauchy's Mean Value Theorem and Taylors Theorem Understand extreme values of functions, monotonic functions, CO5 first derivative test, concavity and curve sketching CO6 Understand Indeterminate forms
5	5B05 MAT	Set theory, Theory of Equations and Complex numbers	 CO1 Understand finite and infinite sets, Countable and Uncountable sets, Cantor's theorem. CO2 Understand Roots of equations, Relations connecting the roots and coefficients of an equation, Transformation of equations, The cubic equation, Character and position of roots of an equation.

			CO3	Understand Descartes's rule of signs, De Guam's Rule, Limits
				to the roots of
				an equation, Rational roots of equations, Newton's method of
				divisors, Symmetric functions of roots of an equation,
				Symmetric functions involving only the difference of the roots
				of $f(x)=0$, Equations whose roots
				are symmetric functions of α, β, γ .
			CO4	Understand Reciprocal equations.
			CO5	Understand Cubic equation, Equation whose roots are the
				squares of the difference of the roots, Character of the Roots,
			gor	Cardin's Solution
			CO6	Understand Roots of complex numbers, General form of De
				More's theorem, the nth roots of unity, the nth roots of -1,
			007	Factors of xn-1 and xn+1, the imaginary cube roots of unity.
			CO/	Understand polar form of complex numbers, powers and roots.
			COI	Understand Algebraic Properties, Order Properties and Absolute
				Values of D Understand the Completeness Droporty of D and its
				applications to
				derive Archimedean Property and Density theorem
			CO^2	Understand intervals in the real line
			CO3	Understand Sequences and their Limits Limit Theorems
		Real analysis I	005	Monotone
	5B06 MAT			Sequences.
5			CO4	Understand Subsequences and the Bolzano-Weierstrass Theorem,
				The Cauchy Criterion.
			CO5	Understand Infinite Series, Absolute Convergence.
			C06	Understand Comparison test, Root test, Ratio test, Integral test and
				Raabe's test for Absolute convergence.
			CO7	Understand Alternating series test, Dirichlet's test and Abel's test
				for Non Absolute convergence.
			CO8	Understand Continuous Functions, composition of continuous
			~~ .	functions and continuous functions on intervals.
			COI	Understand Separable ODEs, Exact ODEs, Linear ODEs,
		Differential Equations and Laplace Transform	000	Bernoulli equation and methods to solve these ODEs
			CO2	Understand the theorem of Existence and Uniqueness of solutions
			CO^{2}	of first and second order ODEs Understand Homogeneous Lincer ODEs of Second Order and
			COS	solve homogeneous linear ODEs of second order with constant
				coefficients and Fuler-Cauchy equation
			CO4	Understand Nonhomogeneous ODEs and solve by variation of
			001	parameters
	5B08		CO5	Understand Laplace Transform and inverse Laplace
	MAT			Transformation
			CO6	Understand The first and The second shifting theorems and their
				applications
			CO7	Understand the methods to find Laplace transforms of derivatives
				and integrals of functions
			CO8	Understand the method of differentiating and integrating Laplace
				transform
			CO9	Solve ordinary differential equations and integral equations using
				Laplace transform
	5B09	Vector Calculus	CO1	Understand lines and planes in space
			CO2	Understand curves in space, their tangents, normal, curvature,

CO3 Understand Directional derivatives and gradient vector planes and differentials. Solve extreme value problems	s, tangent
planes and differentials. Solve extreme value problems	s, tungont
planes and anterentials. Solve extreme value problems	using
Lagrange multipliers	using
CO4 Understand Partial derivatives with constrained variab	les and
Taylor's formula for two variables	
CO5 Understand Line integrals Solve for work circulation	and flux
using line integrals	and mux
CO6 Understand nath independence conservative fields and	notential
functions	potential
CO7 Understand Green's theorem and solve problems using	Green's
theorem	, Green s
CO8 Understand Surface area and surface integrals	
CO9 Understand Stoke's theorem and solve problems using	Stoke's
theorem	Stoke 5
CO10 Understand Divergence theorem and solve problems u	sing
Divergence theorem	
CO1 Understand the concept of Limit and continuity, metho	ods of
finding limits definition. Differentiation-rules of diffe	rentiation.
Parametric function logarithmic differentiation.	,
CO2 Understand the Successive differentiation, Local maxim	mum and
local minimum and solves problems	
CO3 Understand the Rules of integration, Some standard re-	sults,
Course Consumer's surplus, Producer's surplus, Consumer's s	urplus
CO4 Understand rate of interest, Continuous compounding,	Compound
interest, Present valve, interest and discount, Rate of d	iscount,
Equation of value, Depreciation and solves problems	
CO1 Understand Uniform Continuity, Monotone and Inverse	e Functions
CO2 Understand Riemann Integral and Riemann-integrable	Functions
CO3 Understand Fundamental Theorem of Calculus	
CO4 Understand Improper Integrals	
6B10 CO5 Understand Beta and Gamma Functions and their prope	erties.
6 Real Analysis II CO6 Understand Transformations of Gamma Function and I	Duplication
formula	
CO7 Understand Point wise and Uniform Convergence of se	quence of
functions and Interchange of Limits	
CO8 Understand Series of Functions	
CO9 Understand the concept of Metric Spaces	
	,•
Understand Analytic Function, Cauchy–Riemann Equa	tions.
Laplace's Equation.	tions
Understand Exponential Function, Engenmetric Func	lions,
Bower of complex numbers	141
Fower of complex numbers CO2 Understand line integral in the complex plane. Cauchyr	c
6B11 Complex Analysis integral theorem Cauchy's integral formula and deriv	5 tives
MAT MAT	111400
CO4 Understand convergence of Sequences and Series of co	mplex
functions	mpiex
CO5 Understand power series functions given by powerseri	es.
Taylor series. Maclaurin's Series and Laurent Series	
CO6 Understand singularities and zeros of complex function	S
CO7 Understand residue integration method and integrate re	al

				integrals
			CO1	Understand Interpolation techniques: Interpolation with unevenly space
				points, Langrange interpolation, Newton's divided differences
				interpolation, Finite difference operators and finite differences, Newton
				interpolation formulae and Central difference
		Numerical Methods, Fourier series and Partial Differential Equations		interpolation.
			CO2	Understand Numerical differentiation using difference formulae
	6012		CO3	Understand Picard's method, Solution by Taylor series method,
	ODIZ			Euler method and Runge- Kutta methods.
	IVIAT		CO4	Understand Fourier Series: Arbitrary period, Even and Odd Functions,
				Half-Range Expansions and Fourier Integrals.
			CO5	Understand Partial Differential eqations, Solution by Separating Varial
			CO6	Understand the use of Fourier Series in solving PDE: D'Alembert's
				Solution of the Wave Equation. Characteristics and solving Heat Equ
				by Fourier Series.
			CO7	Understand Laplacian in Polar Coordinates
			CO1	Understand the concept of Vector spaces, subspaces, linear
				combinations ad system of equations.
			CO2	Understand the concept of Linear Dependence and Linear
				Independence, Bases and Dimension, Maximal Linearly
				Independent Subsets and solves problems.
			CO3	Understand the concept of Linear Transformations, Null
				Spaces, and Ranges, The Matrix Representation of a Linear
	6B13	Linear Algebra		Transformation.
	MAT	Linear Aigeora	CO4	Understand Rank of a matrix, Elementary transformations
				of a matrix, Invariance of rank through elementary
				transformations, Normal form, Elementary matrices.
			CO5	Understand the concept System of linear homogeneous
				equations Null space and nullity of matrix, Range of a
				matrix, Systems of linear non homogeneous equations.
			CO6	Understand Eigen values, Eigen vectors, Properties of
			~~.	Eigen values, Cayley-Hamilton theorem
		³ Operations Research	CO1	Understand convex sets, convex functions, their properties, local
				and global extrema and quadratic forms
			CO2	Understand LPP, formulate and solve using graphical method
			CO3	Understand General LPP, canonical and standard forms of LPP
			CO4	Understand simplex method and solve LPP
			CO5	Understand basic solution, degenerate solution, basic feasible
				solution, optimum basic reasible solution, fundamental properties
			000	of solution and simplex method
	CD14D		C06	Understand primal-dual pair, formulation of dual and duality
	6B14B		C07	theorems
	MAI		07	Understand LP formulation of transportation problem and its
			CO9	solution
			08	Understand Mathematical formulation of Assignment problem and
			COO	Independent of sequencing Drossessing (n) is through
			0.09	'2' machines. Processing 'n' jobs through 'l' machines
			CO10	2 machines, riocessing if jobs unrough K machines
				Direction of game with saddle point. Solution of 2v2
				game without saddle point. Graphic solution of 2xn and my2
				games and Arithmetic method for nyn Comes
	ΝΛΛΤ	Project		games and Artunnette method for fixit Games.
			1	

Complementary Courses-						
Mathematics for Polymer Chemistry						
1	1C01 MAT-CH	Mathematics for Chemistry I	 CO1: Understand Hyperbolic Functions, Calculation of the n th derivative – some standard results, determination of n th derivative of rational functions -Leibniz's theorem, Maclaurin's Theorem and Taylor's Theorem CO2 Understand Rolle's theorem, Lagrange's mean value theorem, Meaning of sign of derivative, Cauchy's mean value theorem, higher derivatives, Indeterminate forms, CO3 Understand Partial Differentiation, continuity of a function of two variables limit of a function of two variables, homogeneous functions, Curvature, Radius of curvature (Cartesian Equations), Centre of Curvature, Evolutes and Involutes CO4: Understand Polar coordinates in two dimensional ,Cylindrical and Spherical Coordinates. 			
2	2C02MA T-CH	Mathematics for Chemistry II	 CO1: Understand Integration of Trigonometric Functions Areas of Plane Regions, lengths of plane curves CO2 Understand Volumes and Surfaces of Revolution using integration Multiple Integrals, Double integral, Applications of Double Integration, Triple integrals CO3 Understand Applications of Matrix Multiplication, Linear Systems of Equations, Gauss Elimination, Row equivalent Systems, Linear Independence, Rank of a Matrix, Vector Space, Solutions of Linear Systems ,Cramer's Rule, Inverse of a Matrix: GaussJordan Elimination CO4: Understand Matrix Eigen Value Problems, Cayley-Hamilton Theorem 			
3	3C03 MAT-CH	Mathematics for Chemistry III	 CO1: Understand First Order Ordinary Differential Equations Basic concepts, Separable ODEs, Exact ODEs, Integrating Factors, Linear ODEs, Bernoulli Equation CO2 Understand Second Order Ordinary Differential Equations, Homogeneous Linear ODEs of second order, Homogeneous Linear ODEs with constant coefficients, Euler-Cauchy Equation, Wronskian, Nonhomogeneous ODEs, Solution by variation of Parameters CO3 Understand Laplace Transform, Inverse Transform, Linearity, s-Shifting, Transforms of Derivatives and Integrals, t- Shifting, Convolution, Integral Equations, Differentiation and integration of Transforms. CO4: Understand Fourier series, Functions of any period p = 2L,Half-range Expansions Partial differential Equations, Wave Equation, Solution by Separating Variables, D-Alembert's solution of the wave equation, Heat Equation, Solution by Fourier Series. 			
4	4C04 MAT-CH	Mathematics for Chemistry I V	 CO1: Understand Vector and scalar functions and Fields, Derivatives, Gradient of a scalar field;Divergence of a vector field, Curl of a Vector Field. CO2 Understand Line Integrals, Green's Theorem in the Plane ,Surface Integrals, Triple Integrals, Divergence theorem of Gauss, Stoke's theorem CO3 Understand Solution of Algebraic and Transcendental Equation: Bisection Method, Newton-Raphson Method ,Finite Differences,Interpolation, Divided differences and their properties, Numerical Differentiation and Integration ,Trapezoidal Rule, Simpson's 1/3- Rule CO4: Understand Numerical Solutions ofODE: Solution by Taylor's series, Picard's method of successive approximations, Euler's method, Modified Euler's method, Runge-Kutta method. 			
	Complementary Courses					

	Mathematics for Computer Science						
1	1C01MA T-CS	Mathematics for Computer Science I	 CO1: Understand Hyperbolic Functions, Calculation of the fifth derivative – some standard results, determination of n th derivative of rational functions -Leibniz's theorem, Maclaurin's Theorem and Taylor's Theorem CO2 Understand Rolle's theorem, Lagrange's mean value theorem, Meaning of sign of derivative, Cauchy's mean value theorem, higher derivatives, Indeterminate forms, CO3 Understand Partial Differentiation, continuity of a function of two variables limit of a function of two variables, homogeneous functions, Curvature, Radius of curvature (Cartesian Equations), Centre of Curvature, Evolutes and Involutes CO4: Understand Polar coordinates in two dimensional ,Cylindrical and Spherical Coordinates 				
2	2C02 MAT-CS	Mathematics for Computer Science II	 CO1: Understand Integration of Trigonometric Functions Areas of Plane Regions, lengths of plane curves CO2 Understand Volumes and Surfaces of Revolution using integration Multiple Integrals, Double integral, Applications of Double Integration, Triple integrals CO3 Understand Applications of Matrix Multiplication, Linear Systems of Equations, Gauss Elimination, Row equivalent Systems, Linear Independence, Rank of a Matrix, Vector Space, Solutions of Linear Systems ,Cramer's Rule, Inverse of a Matrix: GaussJordan Elimination CO4: Understand Matrix Eigen Value Problems, Cayley-Hamilton Theorem 				
3	3C03 MAT-CS	Mathematics for Computer Science III	CO1: Understand First Order Ordinary Differential Equations Basic concepts, Separable ODEs, Exact ODEs, Integrating Factors, Linear ODEs, Bernoulli Equation CO2 Understand Second Order Ordinary Differential Equations, Homogeneous Linear ODEs of second order, Homogeneous Linear ODEs with constant coefficients, Euler-Cauchy Equation, Wronskian, Nonhomogeneous ODEs, Solution by variation of Parameters CO3 Understand Laplace Transform, Inverse Transform, Linearity, s-Shifting, Transforms of Derivatives and Integrals, t- Shifting, Convolution, Integral Equations, Differentiation and integration of Transforms. CO4: Understand Fourier series, Functions of any period $p = 2L$,Half-range Expansions Partial differential Equations,Wave Equation, Solution by Separating Variables, Alembert's solution of the wave equation, Heat Equation, Solution by Fourier Series.				
4	4C04 MAT-CS	Mathematics for Computer Science IV	 CO1: Understand Vector and scalar functions and Fields, Derivatives, Gradient of a scalar field;Divergence of a vector field, Curl of a Vector Field. CO2 Understand Line Integrals, Green's Theorem in the Plane ,Surface Integrals, Triple Integrals, Divergence theorem of Gauss, Stoke's theorem CO3 Understand Solution of Algebraic and Transcendental Equation: Bisection Method, Newton-Raphson Method ,Finite Differences,Interpolation, Divided differences and their properties, Numerical Differentiation and Integration ,Trapezoidal Rule, Simpson's 1/3- Rule CO4: Understand Numerical Solutions ofODE: Solution by Taylor's series, Pica method of successive approximations, Euler's method, Modified Euler's method, Runge-Kutta method. 				